
Journal of Applied Mechanics and Technical Physics, Vol. 42, No. 2, pp. 337–344, 2001

NONLINEAR ANTIPLANE DEFORMATION OF AN ELASTIC BODY

UDC 539.3V. D. Bondar’

The antiplane elastic deformation of a homogeneous isotropic prestretched cylindrical body is
studied in a nonlinear formulation in actual-state variables under incompressibility conditions,
the absence of volume forces, and under constant lateral loading along the generatrix. The
boundary-value problem of axial displacement is obtained in Cartesian and complex variables
and sufficient ellipticity conditions for this problem are indicated in terms of the elastic po-
tential. The similarity to a plane vortex-free gas flow is established. The problem is solved
for Mooney and Rivlin–Sonders materials simulating strong elastic deformations of rubber-like
materials. Axisymmetric solutions are considered.

Many important results of the theory of elasticity have been obtained in studying particular types of
deformation. In these cases, the solution of the problems is simplified: the number of equations, unknown func-
tions, and their arguments is decreased. In a number of cases, a complex analysis, which simplifies appreciably
the treatment, is applicable to similar deformations. Along with plane and axisymmetrical deformations, an-
tiplane deformation is also a particular type of deformation. Various aspects of antiplane deformation were
studied in [1–4]; below, this deformation is considered in a nonlinear formulation in actual-state variables as
applied to a cylindrical body.

Upon antiplane deformation of a cylindrical body, the displacements of its particles are parallel to the
generatrix and they do not depend on the axial coordinate. In the actual-state Cartesian coordinate system
x1, x2, x3 with the x3 axis parallel to the cylinder generatrix and the x1 = x and x2 = y axes in the plane of
its average transverse cross section, in the presence of a preliminary uniform volume-preserving tension this
deformation is determined by the displacements

u1 = (1− e)x1, u2 = (1− e)x2, u3 = (1− e−2)x3 + w(x1, x2), (1)

where e is the specified constant (for e = 1, preliminary tension is absent) and w(x, y) is a double continuously
differentiable in the transverse cross section S (with boundary L) function to be determined. We obtain static
relations of nonlinear elasticity in this case, assuming that the material is homogeneous and isotropic with a
given internal energy, the volume forces are absent, and the external surface forces do not depend on the axial
coordinate.

In actual-state variables, the strain and stress measures are the symmetrical Almansi and Cauchy
tensors Ekl and Cauchy Pkl, respectively, and Murnaghan’s law, which relates these tensors, is a constitutive
equation [5]. In antiplane deformation (1), the strain components Ekl and the basis strain invariants Ek
determined in the form

2Ekl =
∂ul
∂uk

+
∂uk
∂ul
− ∂um
∂xk

∂um
∂xl

, E1 = Emm, 2E2 = EnnEmm − EnmEmn, E3 = |Ekl|

(summation is performed over repeated indices) are expressed in terms of the axial displacement w(x, y)
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E11 =
1− e2

2
− 1

2

(∂w
∂x

)2

, E22 =
1− e2

2
− 1

2

(∂w
∂y

)2

, E33 =
1− e−4

2
,

(2)

E12 = −1
2
∂w

∂x

∂w

∂y
, E23 =

e−2

2
∂w

∂y
, E31 =

e−2

2
∂w

∂x
;

2E1 = −(e− e−1)2(2 + e−2)− |∇w|2, 4E2 = (e− e−1)2(e2 − 2− 2e−2)− (2− e2)|∇w|2,
(3)

8E3 = (e− e−1)2(e2 − e−2)− (1− e2)|∇w|2

and, hence, they are functions of the transverse coordinates of the cylinder.
For invariants (3), the following relations are true:

E1 6 0, 4E2 = (e− e−1)2(1− e2) + 2(2− e2)E1,
(4)

8E3 = (e− e−1)2(1− e2) + 2(1− e2)E1, E1 − 2E2 + 4E3 = 0.

By virtue of the above relations, the continuity equation takes the form of the incompressibility condition

ρ = ρ0

√
1− 2E1 + 4E2 − 8E3 = ρ0,

where ρ0 and ρ are the initial and actual-state densities of the material, respectively. Therefore, the material
is incompressible in antiplane deformation.

For an incompressible material, Murnaghan’s law has the form [5, 6]

Pkl = −q0δkl + (δkm − 2Ekm)
∂U

∂Elm
, (5)

where U is the internal-energy density (elastic potential) and q0 is the Lagrangian factor. For a homogeneous
isotropic material, the elastic potential is a function of basis strain invariants. By virtue of relations (4)
between the invariants, this potential depends only on the first invariant: U = U(E1).

Using the expression for the tensor gradient of the first invariant [6] ∂E1/∂Elm = δml, we obtain
∂U/∂Elm = U ′δml. Then, it follows from (5) that upon antiplane deformation, Murnaghan’s law can be
presented by a quasilinear dependence of stresses on strains:

Pkl = −qδkl − 2U ′(E1)Ekl (q = q0 − U ′). (6)

Here q is the hydrostatic pressure. The consequence of formulas (2) and (6) is the expression for stresses in
terms of the hydrostatic pressure and axial displacement:

P11 = −q − (1− e2)U ′ + U ′
(∂w
∂x

)2

, P22 = −q − (1− e2)U ′ + U ′
(∂w
∂y

)2

,

(7)
P33 = −q − (1− e−4)U ′, P12 = U ′

∂w

∂x

∂w

∂y
, P23 = −e−2U ′

∂w

∂y
, P31 = −e−2U ′

∂w

∂x
.

The external normals on the upper (S+) and lower (S−) bases of the cylinder have the constant
components (n±l ) = (0, 0,±1); on its lateral surface S∗, these components depend on transverse coordinates:
(nl) = (n1(x, y), n2(x, y), 0). Therefore, depending on the displacement and pressure, on the corresponding
sites, the stress vectors (p±k ) and (pk) presented by formulas p±k = Pkln

±
l = ±Pk3 and pk = Pklnl = Pk1n1 +

Pk2n2 have the form

p±1 = ∓e−2U ′
∂w

∂x
, p±2 = ∓e−2U ′

∂w

∂y
, p±3 = ∓[q + (1− e−4)U ′]; (8)

p1 = −[q + (1− e2U ′)]n1 + U ′
∂w

∂n

∂w

∂x
, p2 = −[q + (1− e2U ′)]n2 + U ′

∂w

∂n

∂w

∂y
,

(9)
p3 = −e−2U ′

∂w

∂n
.
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It follows from (8) and (9) that if the surface load does not depend on x3, then x3 does not depend on
q on the surface as well. In this case, one can assume that the pressure does not depend on this coordinate
in the entire volume of the cylinder: q = q(x, y). Then, according to (7), all the stresses do not depend on x3

as well: Pkl = Pkl(x, y). By virtue of this property and the representations (7) for stresses, in the absence of
volume forces (∂Pkl/∂xl = 0) the equation of equilibrium are equations for determination of the pressure and
displacement in the cross section S of the cylinder:

∂

∂x

[
− q − (1− e2)U ′ + U ′

(∂w
∂x

)2 ]
+

∂

∂y

(
U ′

∂w

∂x

∂w

∂y

)
= 0,

∂

∂y

[
− q − (1− e2)U ′ + U ′

(∂w
∂y

)2 ]
+

∂

∂x

(
U ′

∂w

∂x

∂w

∂y

)
= 0, (10)

∂

∂x

(
U ′

∂w

∂x

)
+

∂

∂y

(
U ′

∂w

∂y

)
= 0.

In system (10), the first two equations can be transformed by means of the third one to the form

−∂[q + (1− e2)U ′]
∂x

+ U ′
∂

∂x

|∇w|2

2
= 0, −∂[q + (1− e2)U ′]

∂y
+ U ′

∂

∂y

|∇w|2

2
= 0.

With allowance for the relations
∂E1

∂xn
= − ∂

∂xn

|∇w|2

2
, U ′

∂

∂xn

|∇w|2

2
= −U ′ ∂E1

∂xn
= − ∂U

∂xn
(n = 1, 2),

these equations are written in the form
∂

∂x
[q + (1− e2)U ′ + U ] = 0,

∂

∂y
[q + (1− e2)U ′ + U ] = 0

and give, after integration, a representation of hydrostatic pressure via the elastic potential

q = h− (1− e2)U ′ − U, (11)

where h is an integration constant. At the cylinder butt-ends, according to (8) and (11), the axial forces Q±3
depend on the constant h:

Q±3 =
∫
S

p±3 dS = ∓

[
hS −

∫
S

[U + (e−4 − e2)U ′] dS

]
;

therefore, h can be determined from the condition of the absence of axial forces:

h =
1
S

∫
S

[U + (e−4 − e2)U ′] dS (12)

(for e = 1, h is the average value of the potential U in the region S and q is the deviation of the potential
from its average value).

Written with allowance for the dependences U ′(E1) and E1(∇w), in extended form, together with
the geometrical condition at the boundary of the region, the third equation in (10) constitutes the nonlinear
boundary-value problem of axial displacement[

U ′ − U ′′
(∂w
∂x

)2 ]∂2w

∂x2
− 2U ′′

∂w

∂x

∂w

∂y

∂2w

∂x∂y
+

[
U ′ − U ′′

(∂w
∂y

)2 ]∂2w

∂y2
= 0, w

∣∣∣
L

= w∗. (13)

Determined from the solution of this problem, the axial displacement allows one to find all the desired quan-
tities: displacements (1), hydrostatic pressure (11), stresses (7), and the permissible surface loads (8) and
(9).

To establish the type of Eq. (13), following [7], we consider the characteristic determinant D. In this
case, the determinant is a quadratic polynomial in the variables r and s and it can be presented in the form
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D =

[
U ′ − U ′′

(∂w
∂x

)2 ]
r2 − 2U ′′

∂w

∂x

∂w

∂y
rs+

[
U ′ − U ′′

(∂w
∂y

)2 ]
s2 = U ′(r2 + s2)− U ′′

(
r
∂w

∂x
+ s

∂w

∂y

)2
.

One can conclude that

D > 0 for U ′ > 0, U ′′ 6 0; D < 0 for U ′ < 0, U ′′ > 0. (14)

If conditions (14) are satisfied, the characteristic equation D = 0 has no real roots; therefore, Eq. (13)
is an elliptic-type equation for any solution. Thus, inequalities (14) are the sufficient conditions for ellipticity
of the equations of antiplane deformation of an incompressible elastic material presented in terms of the elastic
potential. It is shown in [8] that Eqs. (14) are also the ellipticity conditions upon plane deformation of an
incompressible material.

One can establish the analogy between the nonlinear antiplane deformation of an elastic material and
a steady-state plane vortex-free gas flow. Indeed, introducing the strength characteristic of the material
(coefficient of elasticity) related to the elastic potential and the ellipticity condition k2 = −U ′/U ′′, one can
write Eq. (13) in the form[

1 +
1
k2

(∂w
∂x

)2]∂2w

∂x2
+

2
k2

∂w

∂x

∂w

∂y

∂2w

∂x∂y
+

[
1 +

1
k2

(∂w
∂y

)2 ]∂2w

∂y2
= 0 (15)

and compare it with the equation for the velocity potential ϕ in plane vortex-free flow of an ideal gas with
the local velocity of sound a2 [9]:[

1− 1
a2

(∂ϕ
∂x

)2]∂2ϕ

∂x2
− 2
a2

∂ϕ

∂x

∂ϕ

∂y

∂2ϕ

∂x ∂y
+

[
1− 1

a2

(∂ϕ
∂y

)2 ]∂2ϕ

∂y2
= 0. (16)

Equation (15) is similar to Eq. (16) [the quantities ϕ and −a2 in (16) correspond to the quantities w and k2

in (15)]. This analogy allows us to apply the methods of gas dynamics to the problems of nonlinear elasticity.
With a certain accuracy, strong elastic deformations of incompressible rubber-like materials can be

described, for example, by the Mooney U1 or generalizing Rivlin–Sonders U2 potential [2]:

U1 = C1(I1 − 3) + C2(I2 − 3), U2 = C1(I1 − 3) + f(I2 − 3). (17)

Here C1 > 0 and C2 > 0 are elastic constants, I1 and I2 are special strain invariants, and f is a positive
function. Under incompressibility conditions, the invariants I1 and I2 are expressed in terms of the invariants
E1 and E2 of the Almansi tensor and, by virtue of (4), they are presented in terms of the invariant E1:

I1 − 3 = 4(E2 − E1) = (1− e2)(e− e−1)2 − 2e2E1, I2 − 3 = −2E1.

For potentials (17), these relations make it possible to obtain the representations

U1=C1(1− e2)(e− e−1)2− 2(e2C1 + C2)E1, U2=C1(1− e2)(e− e−1)2− 2e2C1E1 + f(−2E1). (18)

With allowance for the inequalities E1 6 0, it follows from expressions (18) that, for the positiveness of the
potentials, it is necessary that e2 6 1.

For the Mooney potential in (18), the ellipticity conditions (14) is satisfied: U ′ = −2(e2C1 + C2) < 0
and U ′′ = 0, and problem (13) is the Dirichlet problem for axial displacement (coinciding with a similar
problem in the theory of linear elasticity):

∂2w

∂x2
+
∂2w

∂y2
= 0, w

∣∣∣
L

= w∗. (19)

In this case, the same displacement fields and different stress fields correspond to antiplane deformation in
the linear and nonlinear theories.

When f is a linear function, the Rivlin–Sonders potential coincides with the Mooney potential con-
sidered above. We consider the case where f is a quadratic function: f(−2E1) = l(−2E1)2 + m(−2E1) + n.
Then, the elastic potential is also quadratic:

U = aE2
1 − 2bE1 + c, a = 4l, b = m+ e2C1, c = n+ C1(1− e2)(e− e−1)2. (20)
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For the potential (20), the ellipticity conditions (14) are also satisfied: U ′=−a(|∇w|2+v2)<0, U ′′ = 2a > 0
[v2 = (e− e−1)2(2 + e−2) + 2b/a], and the displacement problem (13) takes the form[

v2 + 3
(∂w
∂x

)2
+
(∂w
∂y

)2 ]∂2w

∂x2
+ 4

∂w

∂x

∂w

∂y

∂2w

∂x∂y
+

[
v2 +

(∂w
∂x

)2
+ 3
(∂w
∂y

)2]∂2w

∂y2
= 0,

(21)

w
∣∣∣
L

= w∗.

The boundary-value problems of axial displacement can be also formulated in the complex variables
z = x + iy and z̄ = x − iy, in which the displacement becomes a function of the form w = w(z, z̄). For the
Mooney material, in complex variables, problem (19) has the form

∂2w

∂z ∂z̄
= 0, w

∣∣∣
L

= w∗. (22)

The general solution of the harmonic equation is expressed in terms of the analytical function ϕ(z), which is
determined relative to the specified real part at the boundary:

2w = ϕ(z) + ϕ̄(z̄), Reϕ(z)
∣∣∣
L

= w∗. (23)

In complex variables, for a Rivlin–Sonders material (with a quadratic elastic potential), problem (21)
takes the form (v2

2
+ 4

∂w

∂z

∂w

∂z̄

) ∂2w

∂z ∂z̄
+
(∂w
∂z̄

)2 ∂2w

∂z2
+
(∂w
∂z

)2 ∂2w

∂z̄2
= 0, w

∣∣∣
L

= w∗. (24)

With the parameter v−2 smaller than unity, one can find an approximate solution by representing the

displacement as a series w =
∞∑
k=0

wkv
−2k and keeping a finite number of terms in it. Substituting the series into

the equation and the boundary condition (24) and equating the coefficients at equal powers of the parameter
in different parts, we obtain a sequence of linear problems for the displacement components wk:

∂2wk
∂z ∂z̄

+Nk−1(z, z̄) = 0, wk

∣∣∣
L

= w∗δ0k (k = 0, 1, 2, . . .). (25)

Here Nk−1 are known functions determined by the previous approximations

Nk−1 = 2
k−1∑
m=0

(
4Gm

∂2wk−1−m

∂z ∂z̄
+ H̄m

∂2wk−1−m

∂z2
+Hm

∂2wk−1−m

∂z̄2

)
,

Gm =
m∑
n=0

∂wn
∂z

∂wm−n
∂z̄

, Hm =
m∑
n=0

∂wn
∂z

∂wm−n
∂z

.

In particular, for the zeroth approximation w = w0, problem (25) coincides with problem (22) and has the
solution (23):

∂2w0

∂z ∂z̄
= 0, w0

∣∣∣
L

= w∗, 2w0 = ϕ0(z) + ϕ̄0(z̄), Reϕ0(z)
∣∣∣
L

= w∗.

For the displacement w1 determining the first approximation w = w0 + v−2w1, this problem takes the form

4
∂2w1

∂z ∂z̄
+ (ϕ̄′0(z̄))2ϕ′′0(z) + (ϕ′0(z))2ϕ̄′′0(z̄) = 0, w1

∣∣∣
L

= 0

and has the solution

4w1 + ϕ′0(z)
∫

(ϕ̄′0(z̄))2 dz̄ + ϕ̄′0(z̄)
∫

(ϕ′0(z))2 dz = ϕ1(z) + ϕ̄1(z̄),

Reϕ1(z)
∣∣∣
L

= Re

(
ϕ̄′0(z)

∫
(ϕ′0(z))2 dz

)∣∣∣
L
.
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We consider the antiplane deformation of a tube made from an incompressible (Mooney or Rivlin–
Sonders) material and pressed in coaxial rigid cylindrical cartridges of radii r1 and r2 (r1 > r2) for the
specified displacement of an external cartridge, for a fixed internal cartridge, and in the absence of preliminary
deformation:

w
∣∣∣
r=r1

= w1, w
∣∣∣
r=r2

= 0, e = 1. (26)

For a Mooney material (18) whose elastic potential and its derivative for e = 1 have the values

U = −2CE1 = C
∣∣∣∇w∣∣∣2, U ′ = −2C, C = C1 + C2, (27)

the axial displacement is determined from problem (19). Assuming that the displacement is symmetrical
w = w(r) (r is the polar radius), we write the harmonic equation in the form (4r)−1(rw′)′ = 0. The general
solution w = A ln r + B contains arbitrary constants A and B. Determining them from conditions (26), we
obtain a solution of the problem in the form

w = A ln (r/r2), A = w1/ ln (r1/r2), r =
√
x2 + y2. (28)

Using (12), (27), and (28), we find

|∇w| = A

r
, U = C

A2

r2
, h =

1
S

∫
S

U dS = CA
2w1

r2
1 − r2

2

;

therefore, the hydrostatic pressure (11) is equal to

q = h− U = CA
( 2w1

r2
1 − r2

2

− A

r2

)
. (29)

Thus, the displacement and pressure in the tube depend only on the polar radius.
The Cartesian stresses (7) in the tube volume P11 = −q−2CA2x2/r4, P22 = −q−CA2y2/r4, P33 = −q,

P12 = −2CA2xy/r4, P23 = 2CAy/r2, and P31 = 2CAx/r2 correspond to the quantities in (28) and (29).
According to (28) and (29), with allowance for the representations of the components of the normal and the
normal derivative of displacement n1 = x/r and n2 = y/r and ∂w/∂n = A/r, the Cartesian stresses (9) on
the cylindrical surfaces of the tube are determined in the form

p1

∣∣∣
ri

= ∓CA
( 2w1

r2
1 − r2

2

+
A

r2
i

)xi
ri
, p2

∣∣∣
ri

= ∓CA
( 2w1

r2
1 − r2

2

+
A

r2
i

)yi
ri
, p3

∣∣∣
ri

= ±CA 2
ri
. (30)

Hereinafter, i = 1 and 2 (i = 1 and the upper sign corresponds to the external cylinder, and i = 2 and the
lower sign corresponds to the internal cylinder). Accordingly, referred to the unit length in the longitudinal
direction of the tube, the components Fk

∣∣∣
ri

of the main vectors of lateral surface forces have the zero transverse

and nonzero longitudinal components:

F1

∣∣∣
ri

=
∫∫

p1

∣∣∣
ri
ri dϕ dx3 = 0, F2

∣∣∣
ri

=
∫∫

p2

∣∣∣
ri
ri dϕ dx3 = 0, F3

∣∣∣
ri

= ±4πCA (i = 1, 2)

(ϕ is the polar angle).
According to (8), the surface stresses at the butt-ends of the tube have the values

p±1 = ±2CA
x

r2
, p±2 = 2CA

y

r2
, p±3 = ±CA

(A
r2
− 2w1

r2
1 − r2

2

)
, (31)

where the upper and lower signs correspond to the upper and lower butt-ends. The components Q±k of the

main vectors of these forces are zero: Q±k =
∫∫

p±k r dϕ dr = 0.

In the axisymmetric problem considered, in the cylindrical coordinate system r, ϕ, z, similarly to the
displacement and pressure, the physical tensor and stress-vector components (determined in terms of the
Cartesian components of corresponding quantities from the transformation formulas) depend only on the
polar radius; here the stresses at the lateral surface of the tube are constant quantities:
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Prr = −CA
(A
r2

+
2w1

r2
1 − r2

2

)
, Pϕϕ = Pzz = CA

(A
r2
− 2w1

r2
1 − r2

2

)
, Prϕ = Pϕz = 0,

Pzr = CA
2
r
, p±r = ±CA 2

r
, p±ϕ = 0, p±z = ±CA

(A
r2
− 2w1

r2
1 − r2

2

)
,

pr

∣∣∣
ri

= −CA
(A
r2
i

+
2w1

r2
1 − r2

2

)
, pϕ

∣∣∣
ri

= 0, pz

∣∣∣
ri

= CA
2
ri
.

Upon deformation of a tube made from a Rivlin–Sonders material, the displacement should be deter-
mined from Eq. (21), which takes the form (8r)−1(rw′3 + v2rw′)′ = 0 for w = w(r). After integration, for the
derivative w′, we obtain the incomplete cubic equation w′3 + v2w′ −m/r = 0 (m is an arbitrary constant),
which has only one real solution owing to the inequality (v2/3)3 + (−m/(2r))2 > 0 [10]:

w′ = J+(r,m) + J−(r,m), J±(r,m) =
3

√
m

2r
±
√
v6

27
+
m2

4r2
. (32)

Integration of Eq. (32) under conditions (26) determines the displacement and yields the following relation
for finding the constant m:

w =

r∫
r2

(J+(r,m) + J−(r,m)) dr, w1 =

r1∫
r2

(J+(r,m) + J−(r,m)) dr. (33)

The integrals in (33) admit the representation in terms of elementary functions: the integrand is reduced
to a rational function by means of the substitution t = 3J2

+(r) [r = m(
√

3t )3/(t3 − v6)], and, according to
[11], the integrals are taken in the finite form:

w = m

[
3t(v2 − t)
v6 − t3

− 1
2v2

ln
(v2 − t)2

v4 + v2t+ t2

]t
t2

, w1 = m

[
3t(v2 − t)
v6 − t3

− 1
2v2

ln
(v2 − t)2

v4 + v2t+ t2

]t1
t2

,

where t1 = 3J2
+(r1) and t2 = 3J2

+(r2).
In (20), for U and e = 1, we assume c = 0, which corresponds to vanishing of the elastic potential in

the absence of deformation. In the case considered, the elastic potential and related quantities are expressed
in terms of the derivative w′(r) determined by formula (32); therefore, they are functions of the polar radius:

U =
a

4
w′2(r)(w′2(r) + 2v2), U ′ = a(w′2(r) + v2),

(34)

q = h− a

4
w′2(r)(w′2(r) + 2v2), h =

a

2(r2
1 − r2

2)

r1∫
r2

w′2(r)(w′2(r) + 2v2) r dr, v2 =
2b
a
.

The functions of the polar radius are also the cylindrical stress-tensor components in the tube volume and the
stress-vector components on its surface:

Prr = −a
4
w′2(r)(3w′2(r) + 2v2)− h, Pϕϕ = Pzz =

a

4
w′2(r)(w′2(r) + 2v2)− h,

Prϕ = Pϕz = 0, Pzr = aw′(r)(w′2(r) + v2), p±r = ±aw′(r)(w′2(r) + v2), p±ϕ = 0,
(35)

p±z = ±
[a

4
w′2(r)(w′2(r) + 2v2)− h

]
, pr

∣∣∣
ri

= ∓
[
h+

a

4
w′2(ri)(3w′2(ri) + 2v2)

]
,

pϕ

∣∣∣
ri

= 0, pz

∣∣∣
ri

= ±aw′(ri)(w′2(ri) + v2).

If v−2 � 1, one can obtain approximate expressions for the displacement and its derivative, and,
hence, for the solution (32)–(35) of the axisymmetric problem. In the case of the linearly elastic potential
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w′, the equation for rw′ = A is an approximation of the corresponding equation for the quadratic potential
rw′3 + v2rw′ = m if m = Av2. Then, presenting the radicals in (32) by means of the expansions

J+ =
v√
3

(
1 +
√

3A
2r

v−1 +
3A2

8r2
v−2 −

√
3A3

2r3
v−3 +

135A4

128r4
v−4

)
,

J− = − v√
3

(
1−
√

3A
2r

v−1 +
3A2

8r2
v−2 +

√
3A3

2r3
v−3 +

135A4

128r4
v−4

)
,

in the indicated approximation, we obtain the expressions

w = A ln r +
A3

2v2r2
+B, w′ =

A

r

(
1− A2

v2r2

)
(A, B = const)

for the displacement and its derivative, respectively. With allowance for the boundary conditions (26), the
displacements is equal to

w = A ln
r

r2
+
A3

2v2

( 1
r2
− 1
r2
2

)
, (36)

where the constant A is determined from the cubic equation

A3 − ugA+ uw1 = 0
(
u =

2r2
1r

2
2v

2

r2
1 − r2

2

, g = ln
r1

r2

)
.

The equation has a unique real solution under the condition from [10]:(
− ug

3

)3
+
(uw1

2

)2
> 0

[
w2

1

4
− 2

27
r2
1r

2
2v

2

r2
1 − r2

2

(
ln
r1

r2

)3
> 0

]
.

The approximate nonlinear solution (36) generalizes the linear solution (28).
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